

metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cyclo-Tetrakis{*µ-N'*-[(8-oxidoguinolin-7yl)methylidene]isonicotinohydrazidato}tetrazinc tetrahydrate

Xiang-Wen Wu, Qing-Long Li, Jian-Ping Ma and Yu-Bin Dong*

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, People's Republic of China Correspondence e-mail: yubindong@sdnu.edu.cn

Received 19 April 2012; accepted 27 April 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.087; data-to-parameter ratio = 13.4.

In the title compound, $[Zn_4(C_{16}H_{10}N_4O_2)_4] \cdot 4H_2O$, the N'-[(8oxidoquinolin-7-yl)methylidene]isonicotinohydrazidate (L^{2-}) ligand binds to the metal ions, forming stable five- and sixmembered chelate rings, leaving the pyridyl groups free. The compound is a tetranuclear Zn^{II} complex centered about a fourfold roto-inversion axis, with the ligand coordinating in the doubly deprotonated form. The Zn^{II} atom has a distorted square-pyramidal geometry being coordinated by one N and two O-atom donors from the doubly deprotonated L^{2-} ligand, and by one N atom and one O-atom donor from a symmetryrelated L^{2-} ligand. In the crystal, four symmetry-related lattice water molecules, centred about a fourfold rotoinversion axis, form a cyclic tetramer through O-H···O hydrogen bonds. These tetramers connect to the complex molecules through O-H···N hydrogen bonds, forming a chain propagating along [100]. Neighbouring molecules are linked by $\pi - \pi$ interactions [centroid–centroid distance = 3.660 (2) Å] involving the quinolidine rings.

Related literature

For heterometallic coordination polymers and coordination compounds involving bridging N-donor ligands, see: Palacios et al. (2008); Tao et al. (2002); Dong et al. (2005). For details of bond lengths in similar zinc(II) complexes, see: Kumar et al. (2006); Woodward et al. (2006).

. 4H₂O

Experimental

Crystal data

$[Zn_4(C_{16}H_{10}N_4O_2)_4]\cdot 4H_2O$	Z = 4
$M_r = 1494.66$	Mo $K\alpha$ radiation
Tetragonal, $I4_1/a$	$\mu = 1.60 \text{ mm}^{-1}$
$a = 21.407 (2) \text{\AA}$	$T = 298 { m K}$
c = 13.626 (3) Å	$0.13 \times 0.11 \times 0.07 \text{ mm}$
$V = 6244.1 (15) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector	16035 measured reflections
diffractometer	2900 independent reflections
Absorption correction: multi-scan	2324 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2003)	$R_{\rm int} = 0.054$
$T_{\min} = 0.819, \ T_{\max} = 0.897$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	217 parameters
$wR(F^2) = 0.087$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
2900 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O3 - H3B \cdots N3 \\ O3 - H3A \cdots O3^{i} \end{array}$	0.85 0.85	2.08 1.99	2.912 (4) 2.835 (5)	168 173
Symmetry code: (i) -	$y \perp 5 x - 3 - 7$	5		

Symmetry code: (i) $-y + \frac{5}{4}, x - \frac{3}{4}, -z + \frac{5}{4}$

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics:

metal-organic compounds

SHELXTL (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the NSFC (Nos. 91027003 and 21072118), the 973 Program (No. 2012CB821705), the PCSIRT, Shangdong Natural Science Foundation (No. JQ200803) and Taishan Scholars' Construction Project Special Fund.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2415).

References

- Bruker (2003). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dong, Y.-B., Zhang, H.-Q., Ma, J.-P., Huang, R.-Q. & Su, C.-Y. (2005). Cryst. Growth Des. 5, 1857–1866.
- Kumar, D. K., Das, A. & Dastidar, P. C. (2006). Cryst. Growth Des. 6, 1903– 1909.
- Palacios, M. A., Wang, Z., Montes, V. A., Zyryanov, G. V. & Anzenbacher, P. Jr (2008). J. Am. Chem. Soc. 130, 10307–10314.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tao, J., Zhang, Y., Tong, M.-L., Chen, X.-M., Yuen, T., Lin, C. L., Huang, X. & Li, J. (2002). Chem. Commun. pp. 1342–1343.
- Woodward, J. D., Backov, R. V., Abboud, K. A. & Talham, D. R. (2006). Polyhedron, 25, 2605–2615.

supplementary materials

Acta Cryst. (2012). E68, m727-m728 [doi:10.1107/S1600536812018995]

cyclo-Tetrakis{*µ-N'*-[(8-oxidoquinolin-7-yl)methyl-idene]isonicotinohydrazidato}tetrazinc tetrahydrate

Xiang-Wen Wu, Qing-Long Li, Jian-Ping Ma and Yu-Bin Dong

Comment

The synthesis of metal-containing compounds is the first and an important step in a promising route to novel heterometallic coordination polymers (Tao *et al.*, 2002). It is well known that the relative orientations of N donors and the variation of the bridging spacer may lead to the construction of supramolecular motifs that have not been achieved using normal linear organic ligands. The ligand N'-((8-hydroxyquinolin-7-yl)methylene)isonicotinohydrazide ligand (**LH**₂) is unsymmetrical, containing two different terminal coordinating sites, *i.e.* a pyridyl and a 7-hydrazinylidene-8-hydroxy-quinoline chelator. The latter contains the N/O-bidentate chelating motif, which usually binds to metal ions in a deprotonated manner (Palacios *et al.*, 2008). It was also found that this chelator binds to metal ions in preference to the pyridine N atom. This could provide a favourable coordination strategy for the synthesis of multinuclear metal-containing compounds. As part of our continuing studies of coordination compounds with bridging N-donor ligands (Dong *et al.*, 2005), we report herein on the synthesis and crystal structure of a novel Zn^{II} compound with free pyridyl groups.

The title compound is a tetranuclear Zn^{II} complex, centred about a fourfold roto-inversion axis, and crystallizes as a tetrahydrate (Fig. 1). The Zn^{II} atom has distorted square-pyramidal geometry, being coordinated by one N (N2) and two O donors (O1 and O2) from a doubly deprotonated **LH**₂ ligand, and one N (N1ⁱ) and one O donor (O2ⁱ) from a symmetry-related $L^{2^{-}}$ ligand [symmetry code :(i) -y + 5/4, x - 3/4, -z + 9/4]. The N atoms of the pyridine rings are not involved in coordination. The dihedral angle between the pyridine and quinoline ring mean planes is 14.01 (15)°. The Zn—N distances are 2.081 (2) for N1ⁱ and 2.036 (2) Å for N2, which are consistent with values reported previously (Kumar *et al.*, 2006). The Zn—O bond lengths, 2.0329 (19) Å for O1, 2.0350 (18) Å for O2ⁱ and 2.0604 (18) Å for O2, are very close to the Zn—O bond lengths reported by (Woodward *et al.*, 2006).

In the crystal, four symmetry-related lattice water molecules form a cyclic tetramer through O—H···O hydrogen bonds (Fig. 2 and Table 1). These water tetramers are linked to the complex molecules through O—H···N hydrogen bonds (Table 1), so forming a one-dimensional chain propagating parallel to the [001] direction. Parallel chains are connected by π - π interactions involving rings (C4—C9) and (N1/C1—C5)ⁱⁱ [centroid-to-centroid distance 3.660 (2) Å; symmetry code: (iv) -*x*+2, -*y*+1, -*z*+2] resulting in the formation of a two-dimensional network (Fig. 3).

Experimental

A solution of LH₂ (5.3 mg,0.02 mmol) in MeOH (8 ml) was layered onto a solution of ZnSO₄ (5.8 mg, 0.04 mmol) in water (8 mL). The system was left for about two weeks at room temperature and yellow crystals of the title complex were obtained (yield 5.6 mg, 79%). Analysis, calc. for $C_{64}H_{48}N_{16}O_{12}Zn_4$: *C* 51.43, H 3.24, N 14.99%; found: C 51.39, H 3.30, N 14.93%.

Refinement

The C-bound H atoms were placed in geometrically idealized positions and included as riding atoms: C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The water H atoms were located in a difference Fourier maps and refined with distance O—H restrained to 0.85 (2) Å and $U_{iso}(H) = 1.2U_{eq}(O)$

Computing details

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT* (Bruker, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title Zn^{II} complex. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity; only one of the symmetry related water molecules are shown; symmetry codes: (i) -*y* + 5/4, *x* - 3/4, -z + 9/4; (ii) *y* + 3/4, -x + 5/4, -z + 9/4; (iii) -x + 2, -y + 1/2, *z*.

Figure 2

A view of the cyclic tetramer cluster formed between uncoordinated water molecules related by a four-fold roto-inversion axis.

Figure 3

The two-dimensional supramolecular sheet of the title Zn^{II} complex, formed by hydrogen bonds and π - π interactions (dashed lines) between two symmetry-related quinoline rings [centroid-to-centroid distance 3.660 (2) Å [symmetry code: -x+2, -y+1, -z+2].

cyclo-Tetrakis{µ-N'-[(8-oxidoquinolin-7- yl)methylidene]isonicotinohydrazidato}tetrazinc tetrahydrate

Crystal data	
$[Zn_4(C_{16}H_{10}N_4O_2)_4]\cdot 4H_2O$	$D_{\rm x} = 1.590 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 1494.66$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Tetragonal, $I4_1/a$	Cell parameters from 2897 reflections
Hall symbol: I 41/a	$\theta = 2.6 - 22.7^{\circ}$
a = 21.407 (2) Å	$\mu = 1.60 \text{ mm}^{-1}$
c = 13.626 (3) Å	T = 298 K
$V = 6244.1 (15) \text{ Å}^3$	Block, yellow
Z = 4	$0.13 \times 0.11 \times 0.07 \text{ mm}$
F(000) = 3040	
Data collection	
Bruker SMART CCD area-detector	16035 measured reflections
diffractometer	2900 independent reflections
Radiation source: fine-focus sealed tube	2324 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.054$
phi and ω scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -22 \rightarrow 25$
(SADABS; Bruker, 2003)	$k = -25 \rightarrow 25$
$T_{\min} = 0.819, \ T_{\max} = 0.897$	$l = -13 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.087$	neighbouring sites
S = 1.03	H-atom parameters constrained
2900 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 5.0654P]$
217 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	1.10071 (14)	0.45462 (15)	1.1624 (3)	0.0485 (8)
H1	1.1119	0.4530	1.2283	0.058*
C2	1.12416 (16)	0.50312 (16)	1.1052 (3)	0.0611 (10)
H2	1.1506	0.5329	1.1324	0.073*
C3	1.10790 (16)	0.50630 (15)	1.0094 (3)	0.0590 (10)
Н3	1.1230	0.5388	0.9707	0.071*
C4	1.06842 (14)	0.46097 (14)	0.9677 (3)	0.0442 (8)
C5	1.04647 (12)	0.41352 (13)	1.0312 (2)	0.0336 (6)
C6	1.00568 (12)	0.36577 (12)	0.9960 (2)	0.0303 (6)
C7	0.98754 (13)	0.36698 (13)	0.8981 (2)	0.0361 (7)
C8	1.01152 (15)	0.41496 (15)	0.8363 (2)	0.0497 (8)
H8	1.0003	0.4149	0.7704	0.060*
С9	1.04951 (15)	0.46024 (16)	0.8689 (3)	0.0538 (9)
Н9	1.0633	0.4911	0.8262	0.065*
C10	0.94522 (13)	0.32259 (14)	0.8548 (2)	0.0394 (7)
H10	0.9397	0.3241	0.7871	0.047*
C11	0.84867 (13)	0.20093 (13)	0.9058 (2)	0.0374 (7)
C12	0.80184 (14)	0.15938 (14)	0.8575 (3)	0.0453 (8)
C13	0.77607 (18)	0.17239 (18)	0.7669 (3)	0.0684 (11)
H13	0.7896	0.2065	0.7303	0.082*
C14	0.7291 (2)	0.1330 (2)	0.7317 (4)	0.0865 (15)
H14	0.7106	0.1434	0.6721	0.104*
C15	0.7364 (2)	0.0697 (2)	0.8615 (4)	0.0953 (16)
H15	0.7244	0.0332	0.8935	0.114*
C16	0.78125 (17)	0.10645 (17)	0.9055 (3)	0.0641 (10)
H16	0.7974	0.0958	0.9666	0.077*

Znl	0.910323 (15)	0.265779 (15)	1.04977 (2)	0.03319 (13)	
H3B	0.8948	0.2309	0.6998	0.125*	
H3A	0.9434	0.2098	0.6371	0.125*	
03	0.90970 (15)	0.23053 (16)	0.6420 (2)	0.1038 (11)	
O2	0.98781 (8)	0.32250 (8)	1.06007 (13)	0.0321 (4)	
01	0.85836 (9)	0.19375 (9)	0.99696 (16)	0.0407 (5)	
N4	0.70908 (18)	0.0828 (2)	0.7760 (3)	0.0948 (13)	
N3	0.87505 (12)	0.24302 (11)	0.84775 (18)	0.0418 (6)	
N2	0.91453 (11)	0.28117 (11)	0.90248 (18)	0.0356 (6)	
N1	1.06328 (10)	0.41084 (10)	1.12773 (18)	0.0352 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0442 (18)	0.0485 (19)	0.053 (2)	0.0001 (15)	-0.0103 (16)	-0.0125 (16)
C2	0.055 (2)	0.048 (2)	0.080 (3)	-0.0168 (16)	-0.010 (2)	-0.009 (2)
C3	0.056 (2)	0.0398 (19)	0.081 (3)	-0.0139 (16)	0.004 (2)	0.0075 (19)
C4	0.0402 (17)	0.0385 (17)	0.054 (2)	-0.0054 (14)	0.0016 (15)	0.0072 (15)
C5	0.0317 (15)	0.0319 (15)	0.0371 (17)	0.0010 (11)	0.0006 (13)	0.0033 (13)
C6	0.0312 (14)	0.0295 (14)	0.0301 (16)	0.0012 (11)	0.0024 (12)	0.0056 (12)
C7	0.0407 (16)	0.0377 (16)	0.0299 (16)	-0.0028 (13)	0.0030 (13)	0.0026 (13)
C8	0.056 (2)	0.059 (2)	0.0336 (18)	-0.0082 (17)	-0.0018 (16)	0.0167 (16)
C9	0.058 (2)	0.052 (2)	0.051 (2)	-0.0124 (17)	0.0043 (17)	0.0212 (17)
C10	0.0448 (17)	0.0518 (18)	0.0214 (15)	-0.0025 (14)	-0.0032 (13)	0.0025 (14)
C11	0.0369 (16)	0.0375 (16)	0.0378 (18)	0.0022 (13)	-0.0078 (14)	-0.0077 (14)
C12	0.0392 (17)	0.0460 (18)	0.051 (2)	0.0003 (14)	-0.0057 (15)	-0.0151 (16)
C13	0.077 (3)	0.062 (2)	0.066 (3)	-0.008 (2)	-0.033 (2)	-0.008(2)
C14	0.089 (3)	0.090 (3)	0.080 (3)	-0.004 (3)	-0.043 (3)	-0.022 (3)
C15	0.103 (4)	0.092 (3)	0.091 (4)	-0.053 (3)	-0.001 (3)	-0.016 (3)
C16	0.069 (2)	0.066 (2)	0.057 (3)	-0.0237 (19)	-0.004 (2)	-0.004 (2)
N1	0.0334 (13)	0.0337 (13)	0.0386 (15)	0.0000 (10)	-0.0030 (11)	-0.0050 (11)
N2	0.0406 (14)	0.0419 (14)	0.0244 (13)	-0.0053 (11)	-0.0040 (11)	-0.0006 (11)
N3	0.0492 (15)	0.0483 (15)	0.0279 (14)	-0.0088 (12)	-0.0102 (12)	-0.0038 (12)
N4	0.082 (3)	0.105 (3)	0.097 (3)	-0.035 (2)	-0.019 (2)	-0.029 (3)
01	0.0476 (12)	0.0410 (11)	0.0335 (12)	-0.0098 (9)	-0.0072 (10)	-0.0006 (10)
O2	0.0395 (11)	0.0339 (10)	0.0228 (10)	-0.0075 (8)	-0.0038 (8)	0.0046 (8)
O3	0.128 (3)	0.144 (3)	0.0396 (17)	-0.007 (2)	0.0108 (17)	-0.0185 (19)
Zn1	0.0380(2)	0.0382 (2)	0.02344 (19)	-0.00629 (14)	-0.00228 (14)	0.00205 (14)

Geometric parameters (Å, °)

C1—N1	1.321 (4)	C11—C12	1.493 (4)	
C1—C2	1.392 (5)	C12—C13	1.380 (5)	
C1—H1	0.9300	C12—C16	1.381 (5)	
С2—С3	1.353 (5)	C13—C14	1.397 (5)	
С2—Н2	0.9300	C13—H13	0.9300	
С3—С4	1.406 (5)	C14—N4	1.305 (6)	
С3—Н3	0.9300	C14—H14	0.9300	
С4—С9	1.406 (5)	C15—N4	1.333 (6)	
C4—C5	1.414 (4)	C15—C16	1.379 (5)	

C5—N1	1.365 (4)	C15—H15	0.9300
C5—C6	1.427 (4)	C16—H16	0.9300
C6—O2	1.329 (3)	N1—Zn1 ⁱ	2.081 (2)
C6—C7	1.390 (4)	N2—N3	1.392 (3)
C7—C8	1.423 (4)	N2—Zn1	2.036 (2)
C7—C10	1.439 (4)	O1—Zn1	2.0329 (19)
C8—C9	1.341 (4)	$O2$ — $Zn1^{i}$	2.0350 (18)
C8—H8	0.9300	O2—Zn1	2.0605 (18)
С9—Н9	0.9300	03—H3A	0.8499
C10—N2	1.281 (3)	03—H3B	0.8502
C10—H10	0.9300	$Zn1 - \Omega^{2ii}$	2,0350 (18)
C11—O1	1 269 (4)	$Zn1 - N1^{ii}$	2.081 (2)
C11—N3	1 325 (4)		2.001 (2)
	1.525 (1)		
N1	123 2 (3)	C_{12} C_{13} C_{14}	118 2 (4)
N1 C1 H1	118 /	C_{12} C_{13} H_{13}	120.0
$C_2 C_1 H_1$	118.4	$C_{12} = C_{13} = H_{13}$	120.9
$C_2 = C_1 = III$	110.4	C14 - C13 - III3	120.9 125 1 (4)
$C_3 = C_2 = C_1$	119.0 (3)	N4 - C14 - C13	123.1 (4)
$C_3 = C_2 = H_2$	120.5	$\mathbf{N} = \mathbf{C} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	117.5
C1 = C2 = H2	120.5	C13-C14-H14	117.5
$C_2 = C_3 = C_4$	120.0 (5)	N4-C15-C16	124.4 (4)
$C_2 = C_3 = H_3$	119.7	N4-C15-H15	117.8
C4—C3—H3	119.7	C16—C15—H15	117.8
C9—C4—C3	124.5 (3)	C15—C16—C12	119.0 (4)
C9—C4—C5	118.8 (3)	С15—С16—Н16	120.5
C3—C4—C5	116.7 (3)	С12—С16—Н16	120.5
N1—C5—C4	122.1 (3)	C1—N1—C5	118.4 (3)
N1—C5—C6	117.0 (2)	C1—N1—Zn1 ¹	130.2 (2)
C4—C5—C6	120.8 (3)	$C5-N1-Zn1^{1}$	111.07 (17)
O2—C6—C7	124.3 (2)	C10—N2—N3	116.5 (2)
O2—C6—C5	117.0 (2)	C10—N2—Zn1	129.4 (2)
C7—C6—C5	118.7 (2)	N3—N2—Zn1	113.97 (17)
C6—C7—C8	118.7 (3)	C11—N3—N2	109.7 (2)
C6—C7—C10	123.9 (3)	C14—N4—C15	115.7 (4)
C8—C7—C10	117.5 (3)	C11—O1—Zn1	110.12 (18)
C9—C8—C7	123.0 (3)	$C6-O2-Zn1^{i}$	113.95 (16)
С9—С8—Н8	118.5	C6—O2—Zn1	126.71 (17)
С7—С8—Н8	118.5	Zn1 ⁱ —O2—Zn1	114.03 (8)
C8—C9—C4	120.0 (3)	H3A—O3—H3B	113.4
С8—С9—Н9	120.0	O1—Zn1—O2 ⁱⁱ	102.00 (8)
С4—С9—Н9	120.0	O1—Zn1—N2	78.35 (9)
N2—C10—C7	124.9 (3)	O2 ⁱⁱ —Zn1—N2	164.76 (8)
N2—C10—H10	117.6	O1—Zn1—O2	155.73 (8)
C7—C10—H10	117.6	O2 ⁱⁱ —Zn1—O2	87.94 (8)
O1—C11—N3	126.7 (3)	N2—Zn1—O2	86.34 (8)
O1—C11—C12	118.0 (3)	O1—Zn1—N1 ⁱⁱ	97.94 (8)
N3—C11—C12	115.3 (3)	O2 ⁱⁱ —Zn1—N1 ⁱⁱ	80.24 (8)
C13—C12—C16	117.5 (3)	N2—Zn1—N1 ⁱⁱ	114.92 (9)
C13—C12—C11	122.9 (3)	O2—Zn1—N1 ⁱⁱ	105.61 (8)
	× /		\

C16—C12—C11	119.6 (3)		
N1—C1—C2—C3	0.4 (5)	C4—C5—N1—Zn1 ⁱ	174.9 (2)
C1—C2—C3—C4	-0.7 (5)	C6—C5—N1—Zn1 i	-5.5 (3)
C2—C3—C4—C9	-179.5 (3)	C7-C10-N2-N3	179.0 (3)
C2—C3—C4—C5	1.0 (5)	C7—C10—N2—Zn1	3.4 (4)
C9—C4—C5—N1	179.4 (3)	O1—C11—N3—N2	-2.2 (4)
C3—C4—C5—N1	-1.0(4)	C12—C11—N3—N2	176.2 (2)
C9—C4—C5—C6	-0.2 (4)	C10—N2—N3—C11	177.3 (3)
C3—C4—C5—C6	179.4 (3)	Zn1—N2—N3—C11	-6.4 (3)
N1—C5—C6—O2	-0.4 (4)	C13-C14-N4-C15	0.4 (8)
C4—C5—C6—O2	179.2 (2)	C16—C15—N4—C14	2.6 (8)
N1—C5—C6—C7	180.0 (2)	N3—C11—O1—Zn1	9.4 (4)
C4—C5—C6—C7	-0.4 (4)	C12—C11—O1—Zn1	-169.0 (2)
O2—C6—C7—C8	-178.2 (3)	C7—C6—O2—Zn1 ⁱ	-174.1 (2)
C5—C6—C7—C8	1.4 (4)	C5—C6—O2—Zn1 ⁱ	6.3 (3)
O2—C6—C7—C10	2.3 (4)	C7—C6—O2—Zn1	-21.6 (4)
C5—C6—C7—C10	-178.1 (3)	C5—C6—O2—Zn1	158.79 (18)
C6—C7—C8—C9	-2.0 (5)	C11—O1—Zn1—O2 ⁱⁱ	-173.51 (18)
C10—C7—C8—C9	177.6 (3)	C11—O1—Zn1—N2	-9.08 (19)
C7—C8—C9—C4	1.3 (5)	C11—O1—Zn1—O2	-61.1 (3)
C3—C4—C9—C8	-179.8 (3)	C11—O1—Zn1—N1 ⁱⁱ	104.85 (19)
C5—C4—C9—C8	-0.2 (5)	C10—N2—Zn1—O1	-175.7 (3)
C6-C7-C10-N2	7.5 (5)	N3—N2—Zn1—O1	8.59 (18)
C8-C7-C10-N2	-172.0 (3)	C10—N2—Zn1—O2 ⁱⁱ	-82.8 (4)
O1—C11—C12—C13	163.3 (3)	N3—N2—Zn1—O2 ⁱⁱ	101.5 (3)
N3—C11—C12—C13	-15.3 (5)	C10—N2—Zn1—O2	-14.7 (3)
O1—C11—C12—C16	-14.5 (4)	N3—N2—Zn1—O2	169.66 (19)
N3—C11—C12—C16	166.9 (3)	C10—N2—Zn1—N1 ⁱⁱ	90.9 (3)
C16—C12—C13—C14	2.8 (6)	N3—N2—Zn1—N1 ⁱⁱ	-84.83 (19)
C11—C12—C13—C14	-175.1 (3)	C6—O2—Zn1—O1	73.9 (3)
C12—C13—C14—N4	-3.1 (7)	Zn1 ⁱ —O2—Zn1—O1	-133.61 (16)
N4—C15—C16—C12	-2.7 (7)	C6—O2—Zn1—O2 ⁱⁱ	-170.8 (2)
C13—C12—C16—C15	-0.2 (6)	Zn1 ⁱ —O2—Zn1—O2 ⁱⁱ	-18.38 (9)
C11—C12—C16—C15	177.8 (4)	C6—O2—Zn1—N2	23.3 (2)
C2-C1-N1-C5	-0.4 (4)	Zn1 ⁱ —O2—Zn1—N2	175.75 (10)
C2-C1-N1-Zn1 ⁱ	-173.3 (2)	C6—O2—Zn1—N1 ⁱⁱ	-91.6 (2)
C4—C5—N1—C1	0.8 (4)	Zn1 ⁱ —O2—Zn1—N1 ⁱⁱ	60.89 (11)
C6-C5-N1-C1	-179.6 (2)		

Symmetry codes: (i) y+3/4, -x+5/4, -z+9/4; (ii) -y+5/4, x-3/4, -z+9/4.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H··· <i>A</i>	D····A	<i>D</i> —H··· <i>A</i>
O3—H3 <i>B</i> ···N3	0.85	2.08	2.912 (4)	168
O3—H3 <i>A</i> ···O3 ⁱⁱⁱ	0.85	1.99	2.835 (5)	173

Symmetry code: (iii) -y+5/4, x-3/4, -z+5/4.